L=bar{A} bar{B} C bar{A} bar{B} bar{C}=bar{A} bar{B}(C bar{C})=bar{A} bar{B}
吸收法
A A B=A
L=bar{A} B bar{A} B C D(E F)=bar{A} B
消去法
A bar{A} B=A B
begin{aligned} L & =A B underline{bar{A} C} underline{bar{B} C}=A B (bar{A} bar{B}) C \ & =A B overline{A B C}=A B C end{aligned}
配项法
A bar{A}=1
begin{aligned} L & =A B bar{A} bar{C} underline{B bar{C}}=A B bar{A} bar{C} (A bar{A}) B bar{C} \ & =underline{A B} underline{bar{A} bar{C}} underline{A B bar{C}} underline{bar{A} B bar{C}} \ & =(A B A B bar{C}) (bar{A} bar{C} bar{A} bar{C} B) \ & =A B bar{A} bar{C} end{aligned}
示例1
已知逻辑函数表达式为
L=bar{A} B bar{D} A bar{B} bar{D} bar{A} B D A bar{B} bar{C} D A bar{B} C D
要求:(1)最简的与-或逻辑函数表达式,并画出逻辑图;
(2)仅用与非门画出最简表达式的逻辑图。
begin{aligned} L & =bar{A} B(bar{D} D) A bar{B} bar{D} A bar{B}(bar{C} C) D \ & =bar{A} B A bar{B} bar{D} A bar{B} D \ & =bar{A} B A bar{B}(D bar{D}) \ & =bar{A} B A bar{B} text { (与-或表达式) } \ & =overline{overline{bar{A}} B A bar{B}} \ & =overline{overline{bar{A}} B cdot overline{A bar{B}}} text { (与非-与非表达式) } end{aligned}
示例2
试对逻辑函数表达式
L=bar{A} bar{B} C A bar{B} bar{C}
进行变换,仅用或非门画出该表达式的逻辑图。
begin{aligned} L & =bar{A} bar{B} C A bar{B} bar{C}=overline{overline{bar{A} bar{B} C}} overline{overline{A bar{B} bar{C}}} \ & =overline{A B bar{C} overline{bar{A} B C}} \ & =overline{overline{overline{A B bar{C}} overline{bar{A} B C}}} end{aligned}