(6)Flink CEP SQL模拟账号短时间内异地登录风控预警

2022-08-30 10:19:12 浏览数 (20)

本篇文章我们来模拟一个真实的风险识别场景,模拟XX平台上可能出现盗号行为。

技术实现方案:

(1)通过将xxx平台用户登录时的登录日志发送到kafka(本文代码演示用的socket);

(2)Flink CEP SQL规则引擎中定义好风控识别规则,接入kafka数据源,比如一个账号在5分钟内,在多个不同地区有登录行为,那我们认为该账号被盗;

(3)Flink CEP将识别到的风险数据可以进行下发,为数据应用层提供数据服务,如:风控系统,数据大屏,态势感知.....

(1)我们先来定义一个数据生产者,模拟用户登录,产生登录日志:

```java

package com.producers;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.Random;

/**

* Created by lj on 2022-08-10.

*/

public class Socket_Producer1 {

public static void main(String[] args) throws IOException {

try {

ServerSocket ss = new ServerSocket(9999);

System.out.println("启动 server ....");

Socket s = ss.accept();

BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));

String response = "java,1,2";

//每 2s 发送一次消息

int i = 0;

Random r=new Random();

String[] userArr = {"user1","user2","user3","user4","user5","user6","user7","user8","user9"};

String[] loginIP = {"167.234.67.123","219.141.178.14","220.180.239.202","111.73.240.192","123.182.253.242"};

while(true){

Thread.sleep(2000);

response= userArr[r.nextInt(userArr.length)] "," loginIP[r.nextInt(loginIP.length)] "n";

System.out.println(response);

try{

bw.write(response);

bw.flush();

i ;

}catch (Exception ex){

System.out.println(ex.getMessage());

}

}

} catch (IOException | InterruptedException e) {

e.printStackTrace();

}

}

}

```

(2)在CEP中接入日志数据、定义风控规则

```java

package com.examples;

import org.apache.flink.api.common.functions.MapFunction;

import org.apache.flink.streaming.api.datastream.DataStreamSource;

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.table.api.Table;

import org.apache.flink.table.api.TableResult;

import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.time.LocalDateTime;

import static org.apache.flink.table.api.Expressions.$;

/**

* Created by lj on 2022-08-10.

*/

public class CEPSQLSocket1 {

public static void main(String[] args) throws Exception {

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env.setParallelism(1);

StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

DataStreamSource<String> streamSource = env.socketTextStream("127.0.0.1", 9999,"n");

SingleOutputStreamOperator<UserLoginLog> userLoginLog = streamSource.map(new MapFunction<String, UserLoginLog>() {

@Override

public UserLoginLog map(String s) throws Exception {

String[] split = s.split(",");

return new UserLoginLog(split[0], split[1], LocalDateTime.now());

}

});

// 将流转化为表

Table table = tableEnv.fromDataStream(userLoginLog,

$("username"),

$("ip"),

$("rowtime1"), //.rowtime()

$("pt").proctime());

CEP_SQL(env,tableEnv,table);

env.execute();

}

private static void CEP_SQL(StreamExecutionEnvironment env,StreamTableEnvironment tEnv,Table table){

System.out.println("===============CEP_SQL=================");

tEnv.createTemporaryView("CEP_SQL", table);

String sql = "SELECT * "

"FROM CEP_SQL "

" MATCH_RECOGNIZE ( "

" PARTITION BY username "

" ORDER BY pt " //在窗口内,对事件时间进行排序。

" MEASURES " //定义如何根据匹配成功的输入事件构造输出事件

" e1.username as user1,"

" First(e1.ip) as first_ip,"

" LAST(e2.ip) as last_ip,"

" e1.rowtime1 as rt,"

" LAST(e2.pt) as end_tstamp " //最新的事件时间为end_timestamp

" ONE ROW PER MATCH " //匹配成功输出一条

" AFTER MATCH skip to next row " //匹配后跳转到下一行

" PATTERN ( e1 e2 ) WITHIN INTERVAL '5' MINUTE "

" DEFINE " //定义在PATTERN中出现的patternVariable的具体含义

" e1 AS "

" e1.username <> '', "

" e2 AS "

" e1.username = e2.username AND e1.ip <> e2.ip "

" ) MR";

TableResult res = tEnv.executeSql(sql);

// while (res.collect().hasNext()){

// Row next = res.collect().next();

// System.out.println(next);

// }

res.print();

tEnv.dropTemporaryView("CEP_SQL");

}

public static class UserLoginLog {

public String username;

public String ip;

public LocalDateTime rowtime1;

public UserLoginLog(){

}

public UserLoginLog(String username,String ip,LocalDateTime rowtime){

this.username = username;

this.ip = ip;

this.rowtime1 = rowtime;

}

}

}

````

(3)启动数据生产者,每2秒模拟一次用户登录行为

(4)启动CEP规则引擎服务,实时显示出现异地登录的用户信息:

0 人点赞