begin{split}
dmathbf x &= nabla(mathbf x) d mathbf X =
mathbf F cdot d mathbf X = frac{partialmathbf x(mathbf X,t) }{partialmathbf X}d mathbf X \
dmathbf u &= nabla(mathbf u) d mathbf X = mathbf Hcdot d mathbf X
end{split}
quad (8)
其中,叫做变形梯度,叫做位移梯度。
由(3)可得
begin{split}
mathbf H &= nabla(mathbf x -mathbf X) \
&= nabla mathbf x -nabla mathbf X \
&= frac{partialmathbf x}{partialmathbf X}- frac{partialmathbf X}{partialmathbf X} \
&= mathbf F - mathbf I
end{split} tag{9}
begin{split}
Delta^2 &= ds^2-dS^2\
&=(mathbf F cdot d mathbf X)(mathbf F cdot d mathbf X) - d mathbf X cdot d mathbf X \
&= (d mathbf Xcdot mathbf F^T)(mathbf F cdot d mathbf X)-d mathbf X cdot d mathbf X\
&=dmathbf X(mathbf F^Tmathbf F)dmathbf X - dmathbf X(mathbf I)dmathbf X\
&=dmathbf X(mathbf F^Tmathbf F-mathbf I)dmathbf X
end{split} tag{10}
定义应变
mathbf E = frac{1}{2}(mathbf F^Tmathbf F-mathbf I) tag{11}
则
Delta^2 = 2 dmathbf X (mathbf F^Tmathbf F-mathbf I) dmathbf X tag{12}
由(9)可得
mathbf F = mathbf H mathbf I tag{13}
则
mathbf E = frac{1}{2}((mathbf H mathbf I)^T(mathbf H mathbf I)-mathbf I) tag{14}
展开,得
mathbf E = frac{1}{2}(mathbf H mathbf H^T mathbf H^T mathbf H ) tag{15}
忽略高阶量,线性化的拉格朗日应变张量为
hat{mathbf E }= frac{1}{2}(mathbf H mathbf H^T ) tag{16}